A derivation of Curve's Stable Swap price and slippage

Arthur Bagourd

May 2022

Abstract

We follow on Curve's Stable Swap paper and derive the price and the slippage of a trade in a stable pool.

For a pool with n stable coins, the StableSwap invariant writes:

$$
A \cdot n^{n} \cdot \sum x_{i}+D=A \cdot D \cdot n^{n}+\frac{D^{n+1}}{n^{n} \cdot \prod x_{i}}
$$

where:

- $D=\sum x_{i}$ is the constant-sum invariant such that the constant-product invariant is $\left(\frac{D}{n}\right)^{n}=\prod x_{i}$
- A is the amplification factor

We can rewrite the StableSwap invariant as a function f :

$$
f\left(x_{1}, \ldots, x_{n}\right)=A \cdot n^{n} \cdot \sum x_{i}+D-A \cdot D \cdot n^{n}-\frac{D^{n+1}}{n^{n} \cdot \prod x_{i}}
$$

such that

$$
f\left(x_{1}, \ldots, x_{n}\right)=0
$$

The exchange rate of stable coin j in terms of stable coin k is given by $r_{j, k}=-\frac{d x_{j}}{d x_{k}}=\frac{\frac{d f}{d x_{k}}}{\frac{d f}{d x_{j}}}$ with:

$$
\begin{aligned}
\frac{d f}{d x_{j}}= & A \cdot n^{n}-\frac{D^{n+1}}{n^{n} \cdot \prod_{i \neq j} x_{i}} \cdot\left(-\frac{1}{x_{j}^{2}}\right) \\
& =A \cdot n^{n}+\frac{D^{n+1}}{n^{n} \cdot x_{j} \cdot \prod x_{i}}
\end{aligned}
$$

And we have:

$$
r_{j, k}=\frac{x_{j} \cdot\left(x_{k} \cdot A \cdot n^{2 n} \cdot \prod x_{i}+D^{n+1}\right)}{x_{k} \cdot\left(x_{j} \cdot A \cdot n^{2 n} \cdot \prod x_{i}+D^{n+1}\right)}
$$

Similarly, the slippage $s_{j, k}$ being the derivative of the price, we have

$$
s_{j, k}=-\frac{d x_{j}}{d x_{k}^{2}}=\frac{\frac{d f}{d x_{k}^{2}}}{\frac{d f}{d x_{j}}}
$$

with

$$
\begin{aligned}
\frac{d f}{d x_{k}^{2}} & =\frac{A \cdot n^{n}+\frac{D^{n+1}}{n^{n} \cdot x_{k} \cdot \prod x_{i}}}{d x_{k}} \\
& =-\frac{2 \cdot D^{n+1}}{x_{k}^{2} \cdot n^{n} \cdot \prod x_{i}}
\end{aligned}
$$

And we have

$$
\begin{gathered}
s_{j, k}=\frac{-\frac{2 \cdot D^{n+1}}{x_{k}^{2} \cdot n^{n} \cdot \prod x_{i}}}{A \cdot n^{n}+\frac{D^{n+1}}{n^{n} \cdot x_{j} \cdot \prod x_{i}}} \\
=-\frac{2 \cdot x_{j} \cdot D^{n+1}}{x_{k}^{2} \cdot\left(A \cdot \prod x_{i} \cdot n^{2 n} \cdot x_{j}+D^{n+1}\right)}
\end{gathered}
$$

