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This paper generalises the valuation of natural gas storage contracts to two hubs through the replication model ap-
proach. We are using a portfolio of forwards to replicate firm injections and withdrawals and spread options to add
optionality. We show that the value added by considering the second hub is significant.
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1 Introduction

Companies renting or owning gas storages, such as energy producing companies or energy trading companies, need
to be able to price them. Currently there exists several approaches to price gas storages connected to a single hub
but there is no standard model to price a storage connected to two hubs, meaning that these storages are not currently
valued at their fair value. In this paper we aim at providing quantitative analysts from the industry with a reliable
model they can use in order to price gas storages.

The approach we undertake in this study is to represent the optimal decision problem (choosing positions) by a dynamic
decision problem through the replication of the storage by a portfolio of forwards and options. Given forward prices
and options prices, we maximise the objective functions defined as the positions by the prices under the physical
constraints that relate to the storage and the hubs. The positions taken are on firm withdrawal strategies and on options
to switch strategies.

We first explain how the model for a gas storage connected to a single hub works (literature review). In a second part
we develop the models to price a storage connected to two hubs. Then we present some results in terms of difference
of valuation for the model. Finally we conclude with some remarks about the model and some recommendations for
market practitioners.

2 Literature Review

There are two standard valuation models for gas storages: the Longstaff and Schwartz approach [10] and the approach
through replication with forwards and spread options.

We first recall the forward price process of the natural gas storage. Then we present the replication approach for a
storage connected to a single hub .

2.1 Forward price process

In a model with a single hub, we have a single price and assuming a lognormal distribution, the forward price process
of the natural gas is

F (t, t1) = F (t1) exp(−1

2
σ(t, t1)2t+ σ(t, t1)W (t,m))

where:

• m is the month containing period t1;

• σ(t, t1) is the volatility for period t1 and expiry date t. It depends on the ATM monthly volatility σ(t,m) for
expiry on t and on the forward volatility σfwd(m). If the exercise date t is either five days or less before the start
of t1 or in the same month as t1, we have

σ(t, t1) =

√
σ(t(m),m)2t(m) + σfwd(m)2∆t

t(m) + ∆t

where t(m) is the last day of the month preceding m and ∆t is a time constant representing 15 days. By
convention, σ(t,m) is the standard expiry volatility when t is past the standard expiry date. If the exercise date
t is at once more than five days before the start date of t1 and in an earlier month, we have

σ(t, t1) = σ(t,m)

• W (.,m) is a standard Brownian motion, such as the correlation between W (.,m1) and W (.,m2) is ρ(m1,m2).

Volatilities σ(t,m) are given by swaption coefficients applied to standard expiry volatilities σ(t(m),m).
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2.2 Valuation of a natural gas storage connected to a single hub

A gas storage is generally connected to a single hub [Figure??]. The owner can inject and withdraw from the storage.

When pricing a gas storage connected to a single hub, with the choice to inject, withdraw or do nothing, it is common
in the industry to optimise the firm positions (intrinsic model) with the replication model approach. This approach
uses positions on forwards to replicate the decisions took with the gas storages. A long position on a forward for
delivery on a certain day is equivalent to inject on that day whereas a short position is equivalent to withdraw. Here
the optimisation consists in choosing the days where the forward prices are the higher to withdraw and the days where
it is the lower to inject.

If the owner of the storage wants to add flexibility, he can take positions on options. For instance the option to report
a withdrawal from a day to another or the option to withdraw instead of inject on a certain day. These calendar spread
options can be priced using Monte Carlo simulations or using Kirk’s approximation and Margrabe’s formula to get a
close-form formula.

Given F (t) the forward price at time t, the payoff of such an option would be:

E
[(
α2F (t2) +K − α1F (t1)

)+]
To get the close-form formula we use Kirk’s approach to approximate F (t2)+K by a lognormal price FK of volatility
σK such as the expected value of FK is F (t2) +K, with

σK =

√
1

t
ln

(
α2
2F (t2)2 exp(σ(t, t2)2t) + 2α2KF (t2) +K2

(α2F (t2) +K)2

)
We then apply Margabe’s formula to get

(α2F (t2) +K)N(d1)− α1F (t1)N(d2)

Denoting ρK the correlation between W (.,m1) and the Brownian motion associated to FK , the expected value of
FKF (t, t1) is

(α2F (t2) +K)(F (t1) exp(ρKσkσ(t, t1)t) = α2F (t2)F (t1) exp(ρ(m1,m2)σ(t, t1)σ(t, t2)t) +KF (t1)

with

d1 =
1

σ
√
t

(
ln

(
α2F (t2) +K

α1F (t1)

)
+

1

2
σ2t

)
d2 = d1 − σ

√
t

σ =
√
σ2
K + σ(t, t1)2 − 2ρKσKσ(t, t1)

ρK =
1

tσkσ(t, t1)
ln

(
α2F (t2) exp(ρ(m1,m2)σ(t, t1)σ(t, t2)t) +K

α2F (t2) +K

)
Another method to value the storage is to use the Longstaff and Schwartz approach in order to simulate prices using a
recursion formula. In this paper we will use the close-form formula.

Once the portfolio is replicated, we maximise its present value, i.e. the positions times the value:

PV = FirmPositions ∗ FirmV alues+OptionPositions ∗OptionV alues

Gas storages are subject to several physical constraints such as tunnel constraints, withdrawal and injection ratchet
constraints, transport constraints, etc.

Optimising the firm and optional positions to value the storage thus leads us to solve a dynamic programming linear
equation. Onec implemented this can be solved by an optimiser function.
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3 Model

In this section we consider a gas storage connected to two hubs. We first describe the price process of the underlying
natural gas, then we present the intrinsic model and finally the stochastic model.

3.1 Natural gas price model

We denote by Fh(ti, tj) the forward price for delivery day tj observed at hub h on date ti.

Fh(ti, tj) = Fh(0, tj) exp

(
−1

2
σ(ti, tj)

2ti + σ(ti, tj)W (ti,m)

)
where

• m is the month containing period tj

• σ(ti, tj) is the volatility for period tj and expiry date ti. It depends on the at-the-money monthly volatility
σ(ti,m) for expiry on ti and on the forward volatility σfwd(m). If the exercise date ti is either five days or less
before the start date of tj , or in the same month as tj ,

σ(ti, tj) =

√
σ(ti(m),m)2ti(m) + σfwd(m)2∆ti

ti(m) + ∆ti

where ti(m) is the last day of the month preceding m and ∆ti is a time constant representing 15 days. By
convention, σ(ti,m) is the standard expiry volatility when ti is past the standard expiry date. If the exercise
date ti is at once more than five days before the start date of tj and in an earlier month,

σ(ti, tj) = σ(ti,m)

• W (.,m) is a standard Brownian motion. We denote by ρ(m1;m2) the time spread correlation between the
standard Brownian motions W (.,m1) and W (.,m2) associated to months m1 and m2. It does not depend on
the exercise date

We recall that volatilities σ(ti,m) are given by swaption coefficients applied to standard expiry volatilities σ(ti(m),m).

3.2 Intrinsic model

In the previous section we presented a model in which we only optimise positions on firm withdrawal strategies and
related options and we considered the energy injected into the storage as an exogenous known parameter. In this
section we focus on optimising firm injection and withdrawal strategies, as well as the related options.

3.3 Withdrawal model - Stochastic

In this section we consider optionality in the model.
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3.3.1 Options

3.3.1.1 Types of options

We denote by C
(
Vk(t), Vl(u)

)
the value of the option that give the opportunity to substitute strategy Vl(u) to strategy

Vk(t). The reported energy by option C
(
Vk(t), Vl(u)

)
is (El(u)− Ek(t)).

Remark 1: it is worth noting that while option C
(
Vk(t), Vl(u)

)
will decrease the energy withdrawn on day t, option

C
(
Vl(u), Vk(t)

)
will increase it.

Remark 2: in this model we consider only options that report strategies. We assume low transport costs relatively to
forward prices, then we do not consider the two following options:

• the option to cancel a withdrawal and do nothing instead

• the option to withdraw while nothing was planned

3.3.1.2 Valuation of options

We optimize firm withdrawal strategies to the two hubs (hi, hj) and positions on options. We denote byC
(
Vk(t), Vl(u)

)
the option that substitutes strategy Vl(u) to strategy Vk(t). The value of such an option is

C
(
Vk(t), Vl(u)

)
= E

[(
Vl(u)− Vk(t)

)+]
= E

[(
∆Fa(u)− λFb(u)− αK + γFc(t)− ρFd(t)

)+] (1)

with a, b, c, d ∈ {hi, hj}.

In order to price these options with a close-form formula, we use Kirk’s approximation combined with the generalisa-
tion of Margrabe’s formula for multi-asset spread options and we get:

∆Fa(u)N(d)−
(
αK + λFb(u) + ρFd(t)− γFc(t)

)
N(d′)

3.3.2 Transport capacities

Considering a hub hi, options O (Vk(t), Vl(u)) that are actually exercised reduce the withdrawal of energy Ehi

k (t)

withdrawn on day t while options O (Vl(u), Vk(t)) increase the volume of energy withdrawn Ehi

k (t). The transport
capacity constraints from the storage facility to each hub hi write

∀(t, i) :
∑
k

Wk(t)Ehi

k (t) +
∑
k,l,u

O (Vl(u), Vk(t))Ehi

k (t)−
∑
k,l,u

O (Vk(t), Vl(u))Ehi

k (t) < TrSF→hi
(t)

The transport capacity constraints between each hub hi and hj write:

∀(t, i, j) : min{TrSF→hj (t), T rhj→hi(t)}+
(
Trhj→hi(t)− TrSF→hj (t)

)+ ≤ Trhj→hi(t)

This condition is always verified as:

min{TrSF→hj (t), T rhj→hi(t)}+
(
Trhj→hi(t)− TrSF→hj (t)

)+
= Trhj→hi(t)

Then we can drop it as it is already included in the strategies’ formulas.
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3.3.3 Bounds on energy in store

The net algebraic energy withdrawn until t consists of the firm withdrawal positions taken before t, of the options that
report a withdrawal before t to another withdrawal before t for a greater volume of energy, of the options that report a
future (after t) withdrawal to a withdrawal before t minus the options that report a withdrawal before t to a withdrawal
in the future, minus the option that report a withdrawal before t to another withdrawal before t but for a lesser volume
of energy. This translates into: ∑

t2≤t

[∑
k

Wk(t2)Ek(t2)

+
∑
t1≤t

∑
k,l

O (Vk(t1), Vl(t2)) (El(t2)− Ek(t1)) +
∑
t1>t

∑
k,l

O(Vk(t1), Vl(t2))El(t2)

−
∑
t1≤t

∑
k,l

O(Vk(t2), Vl(t1))(Ek(t2)− El(t1))−
∑
t1>t

∑
k,l

O(Vk(t2), Vl(t1))Ek(t2)
]

=
∑
t2≤t

[∑
k

Wk(t2)Ek(t2)

+
∑
t1≤t

∑
k,l

O (Vk(t1), Vl(t2)) (El(t2)− Ek(t1))
+ −

∑
t1≤t

∑
k,l

O (Vk(t1), Vl(t2)) (Ek(t1)− El(t2))
+

+
∑
t1>t

∑
k,l

O (Vk(t1), Vl(t2))El(t2)

−
∑
t1≤t

∑
k,l

O (Vk(t2), Vl(t1)) (Ek(t2)− El(t1))
+

+
∑
t1≤t

∑
k,l

O (Vk(t2), Vl(t1)) (El(t1)− Ek(t2))
+

−
∑
t1>t

∑
k,l

O (Vk(t2), Vl(t1))Ek(t2)
]

(2)

To get the lower bound on energy withdrawn we drop the positive optional contributions∑
t2≤t

[∑
k

Wk(t2)Ek(t2)

−
∑
t1≤t

∑
k,l

O (Vk(t1), Vl(t2)) (Ek(t1)− El(t2))
+ −

∑
t1≤t

∑
k,l

O (Vk(t2), Vl(t1)) (Ek(t2)− El(t1))
+

−
∑
t1>t

∑
k,l

O (Vk(t2), Vl(t1))Ek(t2)
] (3)

To get the upper bound on energy withdrawn we drop the negative optional contributions∑
t2≤t

[∑
k

Wk(t2)Ek(t2)

+
∑
t1≤t

∑
k,l

O (Vk(t1), Vl(t2)) (El(t2)− Ek(t1))
+

+
∑
t1>t

∑
k,l

O (Vk(t1), Vl(t2))El(t2)

+
∑
t1≤t

∑
k,l

O (Vk(t2), Vl(t1)) (El(t1)− Ek(t2))
+
] (4)
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A lower bound on energy in store at the end of period t is

SLB(t) = S0 +
∑
t2≤t

[
Ship(t)−

∑
k

Wk(t2)Ek(t2)

−
∑
t1≤t

∑
k,l

(
O (Vk(t1), Vl(t2)) (El(t2)− Ek(t1))

+
+O (Vk(t2), Vl(t1)) (El(t1)− Ek(t2))

+
)

−
∑
t1>t

∑
k,l

(
O (Vk(t1), Vl(t2))El(t2)

)] (5)

and an upper bound on energy in store at the end of period t is

SUB(t) = S0 +
∑
t2≤t

[
Ship(t)−

∑
k

Wk(t2)Ek(t2)

+
∑
t1≤t

∑
k,l

(
O (Vk(t1), Vl(t2)) (Ek(t1)− El(t2))

+
+O (Vk(t2), Vl(t1)) (Ek(t2)− El(t1))

+
)

+
∑
t1>t

∑
k,l

(
O (Vk(t2), Vl(t1))Ek(t2)

)] (6)

Lower and upper bounds can be expressed by means of recursion formulas [Appendix B].

3.3.4 Withdrawal ratchets constraints

For simplicity we assume a simple time dependent ratchet constraint in this model:∑
k

Wk(t)Ek(t) +
∑
k,l,u

O
(
Vl(u), Vk(t)

)
Ek(t) ≤MaxSendOut(t)

We introduce more realistic ratchets constraints in 3.4.6.

3.3.5 Model summary

Decision variables are:

• Wk(t) ∈ [0, 1] the position on strategy of value Vk(t) (euros) that withdraws energy Ek(t) (Mwh) from the
storage

• O
(
Vk(t), Vl(u)

)
∈ [0, 1] the position on option of value C

(
Vk(t), Vl(u)

)
which allows to report a proportion

O
(
Vk(t), Vl(u)

)
∈ [0, 1] of the quantity Wk(t), i.e. a proportion of Ek(t) allocated to strategy Vk(t).

• SUB(t) upper bounds on energy in store

• SLB(t) lower bounds on energy in store

Firm and optional positions are expressed in energy. And we have:

max
{∑

Wk(t)Vk(t) +
∑

O(Vk(t), Vl(u)) C(Vk(t), Vl(u))
}

subject to the following constraints:

• the sum of withdrawal strategies k on day t shifted to strategies l on day u cannot exceed Wk(t) (in Mwh)

∀(k, t) :
∑
l, u

O
(
Vk(t), Vl(u)

)
Ek(t) < Wk(t)Ek(t) (7)
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• recursion formula on lower bound on energy in store (in Mwh):

SLB(t) = S0 +
∑
t2≤t

[
Ship(t)−

∑
k

Wk(t2)Ek(t2)

−
∑
t1≤t

∑
k,l

(
O (Vk(t1), Vl(t2)) (El(t2)− Ek(t1))

+
+O (Vk(t2), Vl(t1)) (El(t1)− Ek(t2))

+
)

−
∑
t1>t

∑
k,l

(
O (Vk(t1), Vl(t2))El(t2)

)] (8)

• the energy in store at the end of period t must be more than Smin(t):

SLB(t) ≥ Smin(t) (9)

• recursion formula on upper bound on energy in store (in Mwh):

SUB(t) = S0 +
∑
t2≤t

[
Ship(t)−

∑
k

Wk(t2)Ek(t2)

+
∑
t1≤t

∑
k,l

(
O (Vk(t1), Vl(t2)) (Ek(t1)− El(t2))

+
+O (Vk(t2), Vl(t1)) (Ek(t2)− El(t1))

+
)

+
∑
t1>t

∑
k,l

(
O (Vk(t2), Vl(t1))Ek(t2)

)] (10)

• the energy in store at the end of period t must be less than Smax(t):

SUB(t) ≤ Smax(t) (11)

• at the end of the last period we require S−end < SLB and S+
end > SUB

• daily constant withdrawal rate constraint (in Mwh)∑
k

Wk(t)Ek(t) +
∑
k,l,u

O
(
Vl(u), Vk(t)

)
Ek(t) ≤MaxSendOut(t)

• on a given period t the energy flowed from the storage facility to each hub hi must be less than the edge capacity:

∀(t, i) :
∑
k

Wk(t)Ehi

k (t) +
∑
k,l,u

O (Vl(u), Vk(t))Ehi

k (t)−
∑
k,l,u

O (Vk(t), Vl(u))Ehi

k (t) < TrSF→hi
(t)

3.4 Stochastic model

In this section we present the stochastic model, thus adding optionality to the firm strategies.

3.4.1 Notation

Similarly as in the previous model, the parameters of the model are:

• independent withdrawal days are indexed by t = 1...n;

• the initial energy in store is S0 and the final energy in store must lie in
[
S−end, S

+
end

]
;
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• inventory level constraints: the nominal capacity is SMAX. The minimum energy in store at the end of period t
is Smin(t). The maximum energy in store at the end of period t is Smax(t);

• time dependent flow costs from hub hk to the storage facility is Khk→SF(t);

• injection and withdrawal costs: the discounted fixed injection cost in period t isK0
I (t). The injection fuel charge

is a percentage K1
I (t) of the market price. The discounted fixed withdrawal cost is K0

W(t). The withdrawal fuel
charge is K1

W(t);

• injection and withdrawal rates: compressors’ nominal capacities in period t are fI(t) for injection and fW(t)
for withdrawal. Given current energy in store S, the level dependent injection reduction factor is gI(t, S); the
corresponding level dependent withdrawal reduction factor is gW(t, S);

• time dependent reserved transport capacities from the storage facility to hub k is TrSF→hk
(t) and from hub k to

the storage facility Trhk→SF(t);

Costs are in the same unit as forward prices. Withdrawal capacity is in energy units per day. Days are indexed from 1
to the number or periods n. We recall parameters from the model with withdrawals only and add parameters linked to
the injection level

3.4.2 Firm strategies

In this model we optimise the firm withdrawal strategies and the firm injection strategies, which are built similarly as
in the previous model.

Here again, for simplicity we assume that withdrawal costs are included in the transport cost on the edge from the
storage facility to the hub. A more realistic representation of the costs included in the strategies can be found in
[Appendix C].

3.4.2.1 Firm withdrawal strategies

We recall the withdrawal strategies from the previous model. On each day we have the four following (non mutually
exclusive) firm withdrawal strategies

• The strategy withdrawing from the storage facility to sell at hub h1 and on day t:

V W
1 (t) = TrSF→h1

(t) [F1(t)−KSF→h1
(t)] + min

{
TrSF→h2

(t), T rh2→h1
(t)
}[
F1(t)−KSF→h2

(t)−Kh2→h1
(t)
]

• The strategy withdrawing from the storage facility to sell at hub h1 and buying at hub h2 to sell at hub h1 on
day t

V W
2 (t) = TrSF→h1

(t) [F1(t)−KSF→h1
(t)] + min

{
TrSF→h2

(t), T rh2→h1
(t)
}[
F1(t)−KSF→h2

(t)−Kh2→h1
(t)
]

+ (Trh2→h1(t)− TrSF→h2(t))+[F1(t)− F2(t)−Kh2→h1(t)]

• The strategy withdrawing from the storage facility to sell at hub h2 and on day t:

V W
3 (t) = TrSF→h2

(t) [F2(t)−KSF→h2
(t)] + min

{
TrSF→h1

(t), T rh1→h2
(t)
}[
F2(t)−KSF→h1

(t)−Kh1→h2
(t)
]

• The strategy withdrawing from the storage facility to sell at hub h2 and buying at hub h1 to sell at hub h2 on
day t

V W
4 (t) = TrSF→h2

(t) [F2(t)−KSF→h2
(t)] + min

{
TrSF→h1

(t), T rh1→h2
(t)
}[
F2(t)−KSF→h1

(t)−Kh1→h2
(t)
]

+ (Trh1→h2(t)− TrSF→h1(t))+[F2(t)− F1(t)−Kh1→h2(t)]
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3.4.2.2 Firm injection strategies

Similarly as with firm withdrawing strategies we get the following four injection strategies

• a strategy where we inject from hub h1 and use other edges to maximize the send in from h1

V I
1(t) = Trh1→SF(t) [F1(t) +Kh1→SF(t)] + min{Trh2→SF(t), T rh1→h2

(t)}[F1(t) +Kh1→h2
(t) +Kh2→SF

(t)]

• the same as the first strategy but where we can buy from h2 and inject into the storage facility

V I
2(t) = Trh1→SF(t) [F1(t) +Kh1→SF(t)] + min{Trh2→SF(t), T rh1→h2

(t)}[F1(t) +Kh1→h2
(t) +Kh2→SF

(t)]

+ (Trh2→SF(t)− Trh1→h2(t))+[F2(t) +Kh2→SF(t)]

• a strategy where we inject from hub h2 and use other edges to maximize the send in from h2

V I
3(t) = Trh2→SF(t) [F2(t) +Kh2→SF(t)] + min{Trh1→SF(t), T rh2→h1

(t)}[F2(t) +Kh2→h1
(t) +Kh1→SF

(t)]

• the same as the first strategy but where we can buy from h1 and inject into the storage facility

V I
4(t) = Trh2→SF(t) [F2(t) +Kh2→SF(t)] + min{Trh1→SF(t), T rh2→h1

(t)}[F2(t) +Kh2→h1
(t) +Kh1→SF

(t)]

+ (Trh1→SF(t)− Trh2→h1
(t))+[F1(t) +Kh1→SF(t)]

3.4.3 Options

3.4.3.1 Type of options

We distinguish three types of options:

• Options to switch a withdrawal strategy k on day t to another withdrawal strategy l on day u

CW(V W
k (t), V W

l (u)) = E
[(
V W
l (u)− V W

k (t)
)+]

• Options to switch a injection strategy k on day t to another injection strategy l on day u

CI(V
I
k(t), V I

l (u)) = E
[(
V I
l (u)− V I

k(t)
)+]

• Options to switch an injection strategy k on day t to a withdrawal strategy l on day u

CIW(V I
k(t), V W

l (u)) = E
[(
V W
l (u)− V I

k(t)
)+]

3.4.3.2 Valuation of options

Similarly to the first model, we optimize firm injections and withdrawals to the two hubs and positions on options. We
denote by C

(
Vk(t), Vl(u)

)
the option that substitutes strategy Vl(u) to strategy Vk(t). The value of such an option is

C
(
Vk(t), Vl(u)

)
= E

[(
Vl(u)− Vk(t)

)+]
= E

[(
− αK(t) + βF1(t) + ζF2(t) + γF1(u) + θF2(u)

)+]
,

where K(t) = K0
W(t) +K1

W(t) +K0
I (t) +K1

I (t) +
∑

l,kK
0
hl→hk

+
∑

l,kK
1
hl→hk

11



3.4.4 Transport capacities

We define EH
k (t) the energy withdrawn from the storage facility at time t by strategy k that flows to the hub hH

(whether it is to be sold at hub hH or to be sold at the second hub). The transport capacity constraint writes

∀(t,H) :
∑
k

Wk(t)EH
k (t) +

∑
k,l,u

OW(Vl(u), Vk(t))EH
k (t)−

∑
k,l,u

OW(Vl(t), Vk(u))EH
k (t) < TrSF→hH

(t)

∀(t,H) :
∑
k

Ik(t)EH
k (t) +

∑
k,l,u

OI(Vl(u), Vk(t))EH
k (t)−

∑
k,l,u

OI(Vl(t), Vk(u))EH
k (t) < TrhH→SF(t)

3.4.5 Bounds on energy in store

Denoting
O(Vk(t), Vl(u)) = OW(Vk(t), Vl(u)) +OI(Vk(t), Vl(u)) +OIW(Vk(t), Vl(u)),

As in the previous model, the net algebraic energy withdrawn until t is∑
t2≤t

[∑
k

Wk(t2)EW
k (t2)−

∑
k

Ik(t2)EI
k(t2)

+
∑
t1≤t

∑
k,l

O(Vk(t1), Vl(t2))(El(t2)− Ek(t1)) +
∑
t1>t

∑
k,l

O(Vk(t1), Vl(t2))El(t2)

−
∑
t1≤t

∑
k,l

O(Vk(t2), Vl(t1))(Ek(t2)− El(t1))−
∑
t1>t

∑
k,l

O(Vk(t2), Vl(t1))Ek(t2)
]

=
∑
t2≤t

[∑
k

Wk(t2)EW
k (t2)−

∑
k

Ik(t2)EI
k(t2)

+
∑
t1≤t

∑
k,l

O (Vk(t1), Vl(t2)) (El(t2)− Ek(t1))
+ −

∑
t1≤t

∑
k,l

O (Vk(t1), Vl(t2)) (Ek(t1)− El(t2))
+

+
∑
t1>t

∑
k,l

O (Vk(t1), Vl(t2))El(t2)

−
∑
t1≤t

∑
k,l

O (Vk(t2), Vl(t1)) (Ek(t2)− El(t1))
+

+
∑
t1≤t

∑
k,l

O (Vk(t2), Vl(t1)) (El(t1)− Ek(t2))
+

−
∑
t1>t

∑
k,l

O (Vk(t2), Vl(t1))Ek(t2)
]

To get the lower bound on energy withdrawn we drop the positive optional contributions∑
t2≤t

[∑
k

Wk(t2)EW
k (t2)−

∑
k

Ik(t2)EI
k(t2)

−
∑
t1≤t

∑
k,l

O (Vk(t1), Vl(t2)) (Ek(t1)− El(t2))
+ −

∑
t1≤t

∑
k,l

O (Vk(t2), Vl(t1)) (Ek(t2)− El(t1))
+

−
∑
t1>t

∑
k,l

O (Vk(t2), Vl(t1))Ek(t2)
]
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To get the upper bound on energy withdrawn we drop the negative optional contributions∑
t2≤t

[∑
k

Wk(t2)EW
k (t2)−

∑
k

Ik(t2)EI
k(t2)

+
∑
t1≤t

∑
k,l

O (Vk(t1), Vl(t2)) (El(t2)− Ek(t1))
+

+
∑
t1>t

∑
k,l

O (Vk(t1), Vl(t2))El(t2)

+
∑
t1≤t

∑
k,l

O (Vk(t2), Vl(t1)) (El(t1)− Ek(t2))
+
]

A lower bound on energy in store at the end of period t is

SLB(t) = S0 +
∑
t2≤t

[∑
k

Ik(t2)EI
k(t2)−

∑
k

Wk(t2)EW
k (t2)

−
∑
t1≤t

∑
k,l

(
O (Vk(t1), Vl(t2)) (El(t2)− Ek(t1))

+
+O (Vk(t2), Vl(t1)) (El(t1)− Ek(t2))

+
)

−
∑
t1>t

∑
k,l

(
O (Vk(t1), Vl(t2))El(t2)

)]
and an upper bound on energy in store at the end of period t is

SUB(t) = S0 +
∑
t2≤t

[∑
k

Ik(t2)EI
k(t2)−

∑
k

Wk(t2)EW
k (t2)

+
∑
t1≤t

∑
k,l

(
O (Vk(t1), Vl(t2)) (Ek(t1)− El(t2))

+
+O (Vk(t2), Vl(t1)) (Ek(t2)− El(t1))

+
)

+
∑
t1>t

∑
k,l

(
O (Vk(t2), Vl(t1))Ek(t2)

)]
The recursion formula for bounds on energy in store can be found in [Appendix B].

3.4.6 Injection and withdrawal ratchet constraints

Given energy in store S at the beginning of period t, the net daily withdrawal rate must not exceed the compressors’
capacity fW(t)gW(t, S) and the daily injection rate must not exceed fI(t)gI(t, S). The reduction factors gW(t, S) and
gI(t, S) are continuous piecewise linear functions of S. The ratchet constraints are formulated in three different ways
depending on their shape:

• we use the formulation of section 3.4.6.1 for periods t where gW(t, S) and fW(t) are constant

• the formulation of section 3.4.6.2 for periods t where gW(t, S) is a concave function of S

• the formulation of section 3.4.6.4 for periods t where gW(t, S) is a monotonic function of S

The constraint for withdrawals can be written as∑
k

Wk(t)−
∑
k

Ik(t) +
∑
k,l,u

O
(
Vl(u), Vk(t)

)EW
k (t) ≤ fW(t)gW(t, S(t− 1))

Similarly for gI(t, S), the constraint can be written as∑
k

Ik(t)−
∑
k

Wk(t) +
∑
k,l,u

O
(
Vk(t), Vl(u)

)EI
k(t) ≤ fI(t)gI(t, S(t− 1))
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We assume that gW(t, S) is defined by a set of nW points (sW,k, gW,k(t)). Without loss of generality, the abscissa sW,k

are the same for every period and sorted in increasing order.
They are given in energy units: SMAX multiplied by percentages of nominal capacity. Similarly for injection con-
straints, we have .

3.4.6.1 Constant injection and withdrawal rates

When fW(t), fI(t) and gW(t, S), gI(t, S) are constant the constraints translate to∑
k

Wk(t)−
∑
k

Ik(t) +
∑
k,l,u

O
(
Vl(u), Vk(t)

)EW
k (t) ≤MaxSendOut

∑
k

Ik(t)−
∑
k

Wk(t) +
∑
k,l,u

O
(
Vk(t), Vl(u)

)EI
k(t) ≤MaxSendIn

3.4.6.2 Concave injection and withdrawal rates

We calculate the slopes

αW,k(t) =
gW,k+1(t)− gW,k(t)

sW,k+1 − sW,k

of function gW(t, S) on the nW − 1 intervals [sW,k, sW,k+1]. If it is concave, then we have

gW(t, s) = min
k≤nW−1

{αW,k(t)(S − sW,k) + gW,k(t)}

for any S. At the beginning of day t, we have S ∈ [SLB(t− 1), SUB(t− 1)], then for the daily withdrawal rate in
period t to be less than fW(t)gW(t, S), it is sufficient that the following nW − 1 constraints are met:∑

k

Wk(t)−
∑
k

Ik(t) +
∑
k,l,u

O
(
Vl(u), Vk(t)

)EW
k (t) ≤ fW(t)

(
gW,k+1(t)− gW,k(t)

sW,k+1 − sW,k

(
SUB(t− 1)− sW,k

)
+ gW,k(t)

)

where gW(t, S) is decreasing;∑
k

Wk(t)−
∑
k

Ik(t) +
∑
k,l,u

O
(
Vl(u), Vk(t)

)EW
k (t) ≤ fW(t)

(
gW,k+1(t)− gW,k(t)

sW,k+1 − sW,k

(
SLB(t− 1)− sW,k

)
+ gW,k(t)

)

where gW(t, S) is increasing;

this yields to∑
k

Wk(t)−
∑
k

Ik(t) +
∑
k,l,u

O
(
Vl(u), Vk(t)

)EW
k (t) ≤ fW(t)

(
gW,k+1(t)− gW,k(t)

sW,k+1 − sW,k

(
S − sW,k

)
+ gW,k(t)

)

For concave injection rates we calculate the slopes:

αI,k(t) =
gI,k+1(t)− gI,k(t)

sI,k+1 − sI,k
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For the daily injection rate on day t to be less than fI(t)gI(t, S), if the slope αI,K(t) is negative we need∑
k

Ik(t)−
∑
k

Wk(t) +
∑
k,l,u

O
(
Vk(t), Vl(u)

)EI
k(t) ≤ fI(t)

(
gI,k+1(t)− gI,k(t)

sI,k+1 − sI,k

(
SUB(t− 1)− sI,k

)
+ gI,k(t)

)

For intervals where the slope is positive we need∑
k

Ik(t)−
∑
k

Wk(t) +
∑
k,l,u

O
(
Vk(t), Vl(u)

)EI
k(t) ≤ fI(t)

(
gI,k+1(t)− gI,k(t)

sI,k+1 − sI,k

(
SLB(t− 1)− sI,k

)
+ gI,k(t)

)

3.4.6.3 Alternative representation of continuous piecewise linear functions

The generic approach presented in this section does not rely on concavity but on monotonicity. Consider a function
g that interpolates linearly a set of n points (sk, rk) such that s1 < s2 < ... < sn. Assume first that g is increasing.
Two variables s ∈ [s1, sn] and r satisfy the equality r = g(s) if and only if there exists n− 1 weights Xk ∈ [0, 1] and
n− 2 binary variables Yk meeting the following conditions:

s = sn +
∑

k≤n−1

Xk(sk+1 − sk)

r = rn +
∑

k≤n−1

Xk(rk+1 − rk)

and Xk+1 < Yk < Xk, ∀ 1 < k < n − 2. It follows from these inequalities that if Xk > 0, then Yk−1 = 1 and in
turn X` = 1, ∀ ` < k. If Xk < 1, then Yk = 0 and X` = 0, ∀ ` > k.

As a consequence, there is at most one weight Xk which is neither zero nor one. If such a weight exists, then
s ∈]sk, sk+1[. When function g is decreasing, weights Xk ∈ [0, 1] and binary variables Yk solve:

s = sn +
∑

k≤n−1

Xk(sk − sk+1)

r = rn +
∑

k≤n−1

Xk(rk − rk+1)

and Xk ≤ Yk ≤ Xk+1, ∀ 1 ≤ k ≤ n− 2. From these inequalities: if Xk > 0, then X` = 1, ∀ ` > k; if Xk < 1, then
X` = 0, ∀ ` < k. Observe that all relationships between variables are linear.

3.4.6.4 Monotonic injection and withdrawal rates

Assume that gW(t, S) is an increasing function of S. Then,

gW(t, S) ≤ gW(t, SLB(t− 1))

For every day t but the first, we introduce nW − 1 weights XW,k(t) and nW − 2 binary variables YW,k(t) subject to
XW,k(t) ≥ YW,k(t) ≥ XW,k+1(t). We use these variables to link

SLB(t− 1) = sW,1 +
∑

k≤nW−1

XW,k(t)(sW,k+1 − sW,k)
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and the corresponding reduction factor on day t

gW(t, SLB(t− 1)) = gW,nW(t) +
∑

k≤nW−1

XW,k(t)(gW,k+1(t)− gW,k(t))

For the withdrawal rate on day t to be less than fW(t)gW(t, S) we need∑
k

Wk(t)−
∑
k

Ik(t) +
∑
k,l,u

OW
(
V W
l (u), V W

k (t)
)

+
∑
k,l,u

OI
(
V I
l (u), V I

k(t)
)

+
∑
k,l,u

OIW
(
V I
l (u), V W

k (t)
)EW

k (t)

≤ fW(t)

(
gW,1(t) +

∑
k

XW,k(t) (gW,k+1(t)− gW,k(t))

)
;

For decreasing withdrawal rates, XW,k+1(t) ≥ YW,k(t) ≥ XW,k(t),

SUB(t− 1) = sW,nW +
∑

k≤nW−1

XW,k(t)(sW,k − sW,k+1)

and∑
k

Wk(t)−
∑
k

Ik(t) +
∑
k,l,u

OW
(
V W
l (u), V W

k (t)
)

+
∑
k,l,u

OI
(
V I
l (u), V I

k(t)
)

+
∑
k,l,u

OIW
(
V I
l (u), V W

k (t)
)EW

k (t)

≤ fW(t)

(
gW,nW(t) +

∑
k

XW,k(t) (gW,k(t)− gW,k+1(t))

)
;

For increasing injection rates, we introduce weights XI,k(t) and binary variables YIk(t) subject to XI,k(t) ≥ YI,k(t) ≥
XI,k+1(t) and

SLB(t− 1) = sI,1 +
∑

k≤nI−1

XI,k(t)(sI,k+1 − sI,k)

For the injection rate on day t to be less than fI(t)gI(t, S) we need∑
k

Ik(t)−
∑
k

Wk(t) +
∑
k,l,u

OW
(
V W
k (t), V W

l (u)
)

+
∑
k,l,u

OI
(
V I
k(t), V I

l (u)
)

+
∑
k,l,u

OIW
(
V I
k(t), V W

l (u)
)EI

k(t)

≤ fI(t)

(
gI,1(t) +

∑
k

XI,k(t) (gI,k+1(t)− gI,k(t))

)
;

For decreasing injection rates on day t, XI,k+1(t) ≥ YI,k(t) ≥ XI,k(t),

SUB(t− 1) = sI,nI +
∑

k≤nI−1

XI,k(t)(sI,k − sI,k+1)

and∑
k

Ik(t)−
∑
k

Wk(t) +
∑
k,l,u

OW
(
V W
k (t), V W

l (u)
)

+
∑
k,l,u

OI
(
V I
k(t), V I

l (u)
)

+
∑
k,l,u

OIW
(
V I
k(t), V W

l (u)
)EI

k(t)

≤ fI(t)

(
gI,nI(t) +

∑
k

XI,k(t) (gI,k(t)− gI,k+1(t))

)
;

Because of binary variables, this formulation is not as tractable as that of section 3.4.6.2 which is therefore preferred
if injection and withdrawal reduction factors are concave.
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3.4.7 Optimisation model

We assume mutually exclusive injections and withdrawals. The cost of injecting one unit of energy on day u and to
withdraw it from and to every hub hk is the random variable

κ(t, u) =
∑
k

TrSF→hk
(u)
[
Fk(t, u)K1

W(u) +K0
W(u)

]
+
∑
k

Trhk→SF(u)
[
Fk(t, u)K1

I (u) +K0
I (u)

]
+
∑
l 6=k

min{TrSF→hl
(u), T rhl→hk

(u)}
[
Fk(t, u)K1

W(u) +K0
W(u)

]
+
∑
l 6=k

min{Trhl→SF(u), T rhk→hl
(u)}

[
Fk(t, u)K1

I (u) +K0
I (u)

]
+
∑
l 6=k

(Trhl→SF(u)− Trhk→hl
(u))+[Fl(t, u)K1

I (u) +K0
I (u)]

• To ensure that firm injection strategies and firm withdrawal strategies remain mutually exclusive in our linear
model, we restrict optimization to options CI

(
V I
k(v1), V I

l (v2)
)

such that

E
[
κ(t, v2)1

(∑
k

Trhk→SF(v2)
[
Fk(t, v2)

(
1 +K1

I (v2)
)

+K0
I (v2)

]
+
∑
l 6=k

min{Trhl→SF(v2), T rhk→hl
(v2)}

[
Fk(t, v2)

(
1 +K1

I (v2)
)

+K0
I (v2)

]
+
∑
l 6=k

(Trhl→SF(v2)− Trhk→hl
(v2))+[Fl(t, v2)

(
1 +K1

I (v2)
)

+K0
I (v2)]

>
∑
k

Trhk→SF(v1)
[
Fk(t, v1)

(
1 +K1

I (v1)
)

+K0
I (v1)

]
+
∑
l 6=k

min{Trhl→SF(v1), T rhk→hl
(v1)}

[
Fk(t, v1)

(
1 +K1

I (v1)
)

+K0
I (v1)

]
+
∑
l 6=k

(Trhl→SF(v1)− Trhk→hl
(v1))+[Fl(t, v1)

(
1 +K1

I (v1)
)

+K0
I (v1)]

)]
≤ 1

2
κ(0, v2)

(12)

and to options CW
(
V W
k (v1), V W

l (v2)
)

such that

E
[
κ(t, v1)1

(∑
k

TrSF→hk
(v2)

[
Fk(t, v2)

(
1−K1

W(v2)
)
−K0

W(v2)
]

+
∑
l 6=k

min{TrSF→hl
(v2), T rhl→hk

(v2)}
[
Fk(t, v2)

(
1−K1

W(v2)
)
−K0

W(v2)
]

>
∑
k

TrSF→hk
(v1)

[
Fk(t, v1)

(
1−K1

W(v1)
)
−K0

W(v1)
]

+
∑
l 6=k

min{TrSF→hl
(v1), T rhl→hk

(v1)}
[
Fk(t, v1)

(
1−K1

W(v1)
)
−K0

W(v1)
] )]
≤ 1

2
κ(0, v1)

(13)

• We show in [Appendix D] that if conditions (12) and (13) are met then it cannot be optimal to have both∑
kWk(t) > 0 and

∑
k Ik(t) > 0

3.4.8 Model summary

Decision variables are:
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• Wk(t) ∈ [0, 1] the position on strategy of value Vk(t) (euros) that withdraws energy Ek(t) (Mwh) from the
storage

• OI
(
V I
k(t), V I

l (u)
)
∈ [0, 1] the position on options that meet condition (13), of value CI

(
V I
k(t), V I

l (u)
)

that allow
to report a proportion OI

(
V I
k(t), V I

l (u)
)
∈ [0, 1] of the quantity Ik(t), i.e. a proportion of EI

k(t) allocated to
strategy V I

k(t).

• OW
(
V W
k (t), V W

l (u)
)
∈ [0, 1] the position on options that meet condition (12), of value CW

(
V W
k (t), V W

l (u)
)

that allow to report a proportion OW
(
V W
k (t), V W

l (u)
)
∈ [0, 1] of the quantity Wk(t), i.e. a proportion of EW

k (t)
allocated to strategy V W

k (t).

• OIW
(
V I
k(t), V W

l (u)
)
∈ [0, 1] the position on option of value CIW

(
V I
k(t), VWl(u)

)
that allow to report a propor-

tion OIW
(
V I
k(t), V W

l (u)
)
∈ [0, 1] of the quantity Ik(t), i.e. a proportion of EI

k(t) allocated to strategy V I
k(t) for

energy EW
k (t) on V W

k (t).

• SUB(t) upper bounds on energy in store

• SLB(t) lower bounds on energy in store

And we have:

max
{∑

Wk(t)V W
k (t) +

∑
Ik(t)V I

k(t) +
∑

O(Vk(t), Vl(u)) C(Vk(t), Vl(u))
}

subject to the following constraints:

• the sum of withdrawal strategies k on day t shifted to strategies l on day u cannot exceed Wk(t) (in Mwh)

∀(k, t) :
∑
l, u

O
(
V W
k (t), V W

l (u)
)
EW

k (t) < Wk(t)EW
k (t) (14)

• the sum of injection strategies k on day t shifted to strategies l on day u cannot exceed Ik(t) (in Mwh)

∀(k, t) :
∑
l, u

O
(
V I
k(t), V I

l (u)
)
EI

k(t) < Ik(t)EI
k(t) (15)

• recursion formula on lower bound on energy in store (in Mwh):

∀t : SLB(t) = SLB(t− 1) + Ship(t)−
∑
k

Wk(t)Ek(t)

+
∑
t2≤t

O (Vk(t), Vl(t2)) (El(t2)− Ek(t1))
+ −

∑
t1≤t

O (Vk(t1), Vl(t)) (El(t2)− Ek(t1))
+

+
∑
t2≤t

O (Vk(t), Vl(t1)) (El(t1)− Ek(t2))
+ −

∑
t1≤t

O (Vk(t2), Vl(t)) (El(t1)− Ek(t2))
+

+
∑
t2≤t

O (Vk(t), Vl(t2))El(t2)−
∑
t1>t

O (Vk(t1), Vl(t))El(t2)

• the energy in store at the end of period t must be more than Smin(t):

SLB(t) ≥ Smin(t)
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• recursion formula on upper bound on energy in store (in Mwh):

∀t : SUB(t) = SUB(t− 1) + Ship(t)−
∑
k

Wk(t)Ek(t)

−
∑
t2≤t

O (Vk(t1), Vl(t)) (Ek(t1)− El(t2))
+

+
∑
t1≤t

O (Vk(t), Vl(t2)) (Ek(t1)− El(t2))
+

−
∑
t2≤t

O (Vk(t2), Vl(t)) (Ek(t2)− El(t1))
+

+
∑
t1≤t

O (Vk(t), Vl(t1)) (Ek(t2)− El(t1))
+

−
∑
t2≤t

O (Vk(t2), Vl(t))Ek(t2) +
∑
t1>t

O (Vk(t), Vl(t1))Ek(t2)

• the energy in store at the end of period t must be less than Smax(t):

SUB(t) ≤ Smax(t)

• the energy flowed through an edge must be less than its capacity:

∀(t,H) :
∑
k

Wk(t)EH
k (t) +

∑
k,l,u

OW(Vl(u), Vk(t))EH
k (t)−

∑
k,l,u

OW(Vl(t), Vk(u))EH
k (t) < TrSF→hH

(t)

∀(t,H) :
∑
k

Ik(t)EH
k (t) +

∑
k,l,u

OI(Vl(u), Vk(t))EH
k (t)−

∑
k,l,u

OI(Vl(t), Vk(u))EH
k (t) < TrhH→SF(t)

• daily constant withdrawal rate constraint (in Mwh)∑
k

Wk(t) +
∑
k,l,u

O
(
Vl(u), Vk(t)

)Ek(t) ≤MaxSendOut(t)

• properties of weights XW,k(t) ∈ [0, 1] and associated binary variables YW,k

XW,k(t) > YW,k(t)

YW,k(t) > XW,k+1(t)

sW,1 +
∑
k

XW,k(t)(SW,k+1 − SW,k) = SLB(t− 1)

• if gW(p, S) is monotonic, the daily withdrawal rate must be less than the compressors capacity fW(t)gW(t, SLB(t−
1)):∑

k

Wk(t)−
∑
k

Ik(t) +
∑
k,l,u

OW
(
V W
l (u), V W

k (t)
)

+
∑
k,l,u

OI
(
V I
l (u), V I

k(t)
)

+
∑
k,l,u

OIW
(
V I
l (u), V W

k (t)
)Ek(t)

≤ fW(t)

(
gW,1(t) +

∑
k

XW,k(t) (gW,k+1(t)− gW,k(t))

)
;

• if gW(p, S) is concave, the daily withdrawal rate must be less than the compressors capacity fW(t)gW(t, SLB(t−
1)):∑

k

Wk(t)−
∑
k

Ik(t) +
∑
k,l,u

OW
(
V W
l (u), V W

k (t)
)

+
∑
k,l,u

OI
(
V I
l (u), V I

k(t)
)

+
∑
k,l,u

OIW
(
V I
l (u), V W

k (t)
)Ek(t)

≤ fW(t)

(
gW,k+1(t)− gW,k(t)

sW,k+1 − sW,k
(SUB(t− 1)− sW,k) + gW,k(t)

)
;
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for all intervals [sW,k, sW,k+1] where gW(t, S) is decreasing and∑
k

Wk(t)−
∑
k

Ik(t) +
∑
k,l,u

OW
(
V W
l (u), V W

k (t)
)

+
∑
k,l,u

OI
(
V I
l (u), V I

k(t)
)

+
∑
k,l,u

OIW
(
V I
l (u), V W

k (t)
)Ek(t)

≤ fW(t)

(
gW,k+1(t)− gW,k(t)

sW,k+1 − sW,k
(SLB(t− 1)− sW,k) + gW,k(t)

)
;

for all intervals where gW(t, S) is increasing;

• properties of weights XI,k(t) ∈ [0, 1] and associated binary variables YI,k

XI,k+1(t) > YI,k

YI,k(t) > XI,k+1

sI,1 +
∑
k

XI,k(t)(SI,k − SI,k+1) = SUB(t− 1)

• if gI(p, S) is monotonic, the daily injection rate must be less than the compressors capacity fI(t)gI(t, SUB(t−1)):∑
k

Ik(t)−
∑
k

Wk(t) +
∑
k,l,u

OW
(
V W
k (t), V W

l (u)
)

+
∑
k,l,u

OI
(
V I
k(t), V I

l (u)
)

+
∑
k,l,u

OIW
(
V I
k(t), V W

l (u)
)Ek(t)

≤ fI(t)

(
gI,nI(t) +

∑
k

XI,k(t) (gI,k(t)− gI,k+1(t))

)
;

• if gI(p, S) is concave, the daily injection rate must be less than the compressors capacity fI(t)gI(t, SUB(t− 1)):∑
k

Ik(t)−
∑
k

Wk(t) +
∑
k,l,u

OW
(
V W
k (t), V W

l (u)
)

+
∑
k,l,u

OI
(
V I
k(t), V I

l (u)
)

+
∑
k,l,u

OIW
(
V I
k(t), V W

l (u)
)Ek(t)

≤ fI(t)

(
gI,k+1(t)− gI,k(t)

sI,k+1 − sI,k
(SUB(t− 1)− sI,k) + gI,k(t)

)
;

for all intervals [sI,k, sI,k+1] where gI(t, S) is decreasing and∑
k

Ik(t)−
∑
k

Wk(t) +
∑
k,l,u

OW
(
V W
k (t), V W

l (u)
)

+
∑
k,l,u

OI
(
V I
k(t), V I

l (u)
)

+
∑
k,l,u

OIW
(
V I
k(t), V W

l (u)
)Ek(t)

≤ fI(t)

(
gI,k+1(t)− gI,k(t)

sI,k+1 − sI,k
(SLB(t− 1)− sI,k) + gI,k(t)

)
;

for all intervals where gI(t, S) is increasing;

4 Results

In this section we compare the difference of mark to market between a storage connected to one hub and a storage
connected to two hubs.

We implemented the model with constant ratchet constraint, etc in MATLAB. We used the linprog function that
solves dynamic decision problems using the simplex algorithm.
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Table 1: Comparison
One hub Two hubs

Intrinsic Value 0 0
Time Value 0 0
Total MtM 0 0

Computation time 0 0

It is worth noticing that the difference in computation time is also important.

Results are pretty straight forward, using this model in order to price a gas storage connected to two hubs allows to
account for this specificity, and then to get a more realistic price of the storage.

The difference in terms of computation time can be overcome when implementing the pricing in another language
such as C++ and by optimising the code.

5 Conclusion

This model, though more expensive in terms of computational time, allows to price more realistically gas storages
connected to two hubs and to take into account this specificity. This model can be generalised to price multi-hub
connected gas storages, and one could easily include other features in the model such as bid ask spread

21



Appendix A. Why optimisation of flows on edges does not work

A.1 Intrinsic model

Considering the optimsiation of the different edges we get the following variables to optimise

• flow on edge from the storage facility to hub 1 ϕSF→h1

• flow on edge from the storage facility to hub 2 ϕSF→h2

• flow on edge from hub 2 to hub 1 ϕh2→h1

• flow on edge from hub 1 to hub 2 ϕh1→h2

We denote by Ii(t) the injection from hub i and by Wi(t) the withdrawal to hub i.

We have the following constraints

• Considering S(t) the energy in store at time t, we have, we have the following recurrence formula

∀t, (t) = S(t− 1) + Ship(t)− ϕSF→h1 − ϕSF→h2

• denoting Ei(t) the net algebraic energy injected in hub i at time t

∀t, Ei(t) = Ii(t)−Wi(t) = ϕhi→hj
− ϕhj→hi

− ϕSF→hi

• daily constraint on the the energy withdrawn at time t

∀t, 0 ≤ ϕSF→h1
+ ϕSF→h2

≤ maxSendOut(t)

• the energy in store at time t must lie between bounds

∀t, Smin(t) ≤ S(t) ≤ Smax(t)

We maximise ∑
t

−E1(t)F1(t)− E2(t)F2(t)

under the previous constraints

A.2 Stochastic model

Now considering options, for each hub we have the following options

• CSI(t1, t2) the value of the option to report an injection from period t1 to period t2

• CSW(t1, t2) the value of the option to report a withdrawal from period t1 to period t2

• CSIW(t1, t2) the value of the option to report an injection from period t1 to a withdrawal in period t2

And we need to optimise the following positions on the corresponding options:

• OI(t1, t2) ∈ [0, 1]

• OW(t1, t2) ∈ [0, 1]

22



• OIW(t1, t2) ∈ [0, 1]

We maximise

∑
t

−E1(t)F1(t)− E2(t)F2(t) +
∑
t1,t2

(OIW(t1, t2) +OI(i, t1, t2) +OW(t1, t2))

The addition of the options to the constraint of the net algebraic energy injected shows that the flow variables are
dependent on the options, which means that there is a need for a great number of new variables and the problem
becomes too complex in terms of computational power and memory.

Appendix B. Recursion formula on bounds of energy in store

B.1 Withdrawal only

In the case of the model with withdrawals only, we show that lower and upper bounds on energy in store can be
obtained by means of recursion formula. Setting SLB(0) = SUB(0) = S0, SUB(t) and SLB(t) can be obtained by
recursion. Among the contributions of options we need to distinguish between the positive and negative contributions
on the past energy in store.

SLB(t) = SLB(t− 1) + Ship(t)−
∑
k

Wk(t)Ek(t) +
∑
t2≤t

[
−
∑
t1≤t

∑
k,l

(
O (Vk(t1), Vl(t2)) (El(t2)− Ek(t1))

+
+O (Vk(t2), Vl(t1)) (El(t1)− Ek(t2))

+
)

−
∑
t1>t

∑
k,l

(
O (Vk(t1), Vl(t2))El(t2)

)]
= SLB(t− 1) + Ship(t)−

∑
k

Wk(t)Ek(t)

+
∑
t2≤t

O (Vk(t), Vl(t2)) (El(t2)− Ek(t))
+ −

∑
t1≤t

O (Vk(t1), Vl(t)) (El(t)− Ek(t1))
+

+
∑
t2≤t

O (Vk(t2), Vl(t)) (El(t)− Ek(t2))
+ −

∑
t1≤t

O (Vk(t), Vl(t1)) (El(t1)− Ek(t))
+

+
∑
t2≤t

O (Vk(t), Vl(t2))El(t2)−
∑
t1>t

O (Vk(t1), Vl(t))El(t)

(16)
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and
SUB(t) = SUB(t− 1) + Ship(t)−

∑
k

Wk(t)Ek(t) +
∑
t2≤t

[
+
∑
t1≤t

∑
k,l

(
O (Vk(t1), Vl(t2)) (Ek(t1)− El(t2))

+
+O (Vk(t2), Vl(t1)) (Ek(t2)− El(t1))

+
)

+
∑
t1>t

∑
k,l

(
O (Vk(t2), Vl(t1))Ek(t2)

)]
= SUB(t− 1) + Ship(t)−

∑
k

Wk(t)Ek(t)

−
∑
t2≤t

O (Vk(t), Vl(t2)) (Ek(t)− El(t2))
+

+
∑
t1≤t

O (Vk(t1), Vl(t)) (Ek(t1)− El(t))
+

−
∑
t2≤t

O (Vk(t2), Vl(t)) (Ek(t2)− El(t))
+

+
∑
t1≤t

O (Vk(t), Vl(t1)) (Ek(t)− El(t1))
+

−
∑
t2≤t

O (Vk(t2), Vl(t))Ek(t2) +
∑
t1>t

O (Vk(t), Vl(t1))Ek(t)

(17)

B.2 Withdrawals and injections

Similarly in the model with injections and withdrawals we get the following recursion formulas. Setting SLB(0) =
SUB(0) = S0, SUB(t) and SLB(t) can be obtained by recursion

SLB(t) = SLB(t− 1) +
∑
k

Ik(t)EI
k(t)−

∑
k

Wk(t)EW
k (t) +

∑
t2≤t

[
−
∑
t1≤t

∑
k,l

(
O (Vk(t1), Vl(t2)) (El(t2)− Ek(t1))

+
+O (Vk(t2), Vl(t1)) (El(t1)− Ek(t2))

+
)

−
∑
t1>t

∑
k,l

(
O (Vk(t1), Vl(t2))El(t2)

)]
= SLB(t− 1) +

∑
k

Ik(t)EI
k(t)−

∑
k

Wk(t)EW
k (t)

+
∑
t2≤t

O (Vk(t), Vl(t2)) (El(t2)− Ek(t))
+ −

∑
t1≤t

O (Vk(t1), Vl(t)) (El(t)− Ek(t1))
+

+
∑
t2≤t

O (Vk(t2), Vl(t)) (El(t)− Ek(t2))
+ −

∑
t1≤t

O (Vk(t), Vl(t1)) (El(t1)− Ek(t))
+

+
∑
t2≤t

O (Vk(t), Vl(t2))El(t2)−
∑
t1>t

O (Vk(t1), Vl(t))El(t)
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and
SUB(t) = SUB(t− 1) +

∑
k

Ik(t)EI
k(t)−

∑
k

Wk(t)EW
k (t) +

∑
t2≤t

[
+
∑
t1≤t

∑
k,l

(
O (Vk(t1), Vl(t2)) (Ek(t1)− El(t2))

+
+O (Vk(t2), Vl(t1)) (Ek(t2)− El(t1))

+
)

+
∑
t1>t

∑
k,l

(
O (Vk(t2), Vl(t1))Ek(t2)

)]
= SUB(t− 1) +

∑
k

Ik(t)EI
k(t)−

∑
k

Wk(t)Ek(t)

−
∑
t2≤t

O (Vk(t), Vl(t2)) (Ek(t)− El(t2))
+

+
∑
t1≤t

O (Vk(t1), Vl(t)) (Ek(t1)− El(t))
+

−
∑
t2≤t

O (Vk(t2), Vl(t)) (Ek(t2)− El(t))
+

+
∑
t1≤t

O (Vk(t), Vl(t1)) (Ek(t)− El(t1))
+

−
∑
t2≤t

O (Vk(t2), Vl(t))Ek(t2) +
∑
t1>t

O (Vk(t), Vl(t1))Ek(t)

Appendix C. A more realistic representation of costs

We include fixed and proportional withdrawal costs to get a more realistic representation of the costs within the
strategies.

C.1 Firm withdrawals

On each day we have the four following (non mutually exclusive) firm withdrawal strategies

• The strategy withdrawing from the storage facility to sell at hub h1 and on day t:

V W
1 (t) = TrSF→h1

(t)
[
F1(t)

(
1−K1

W(t)−K1
SF→h1

(t)
)
−K0

W(t)−K0
SF→h1

(t)
]

+ min
{
TrSF→h2

(t), T rh2→h1
(t)
}[
F1(t)

(
1−K1

W(t)−K1
SF→h2

(t)−K1
h2→h1

(t)
)

−K0
W(t)−K0

SF→h2
(t)−K0

h2→h1
(t)
]

• The strategy withdrawing from the storage facility to sell at hub h1 and buying at hub h2 to sell at hub h1 on
day t

V W
2 (t) = TrSF→h1

(t)
[
F1(t)

(
1−K1

W(t)−K1
SF→h1

(t)
)
−K0

W(t)−K0
SF→h1

(t)
]

+ min
{
TrSF→h2(t), T rh2→h1(t)

}[
F1(t)

(
1−K1

W(t)−K1
SF→h2

(t)−K1
h2→h1

(t)
)

−K0
W(t)−K0

SF→h2
(t)−K0

h2→h1
(t)
]

+ (Trh2→h1(t)− TrSF→h2(t))+[F1(t)(1−K1
h2→h1

(t))− F2(t)(1 +K1
h2→h1

(t))−K0
h2→h1

(t)]

• The strategy withdrawing from the storage facility to sell at hub h2 and on day t:

V W
3 (t) = TrSF→h2

(t)
[
F2(t)

(
1−K1

W(t)−K1
SF→h2

(t)
)
−K0

W(t)−K0
SF→h2

(t)
]

+ min
{
TrSF→h1

(t), T rh1→h2
(t)
}[
F2(t)

(
1−K1

W(t)−K1
SF→h1

(t)−K1
h1→h2

(t)
)

−K0
W(t)−K0

SF→h1
(t)−K0

h1→h2
(t)
]
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• The strategy withdrawing from the storage facility to sell at hub h2 and buying at hub h1 to sell at hub h2 on
day t

V W
4 (t) = TrSF→h2(t)

[
F2(t)

(
1−K1

W(t)−K1
SF→h2

(t)
)
−K0

W(t)−K0
SF→h2

(t)
]

+ min
{
TrSF→h1

(t), T rh1→h2
(t)
}[
F2(t)

(
1−K1

W(t)−K1
SF→h1

(t)−K1
h1→h2

(t)
)

−K0
W(t)−K0

SF→h1
(t)−K0

h1→h2
(t)
]

+ (Trh1→h2
(t)− TrSF→h1

(t))+[F2(t)(1−K1
h1→h2

(t))− F1(t)(1 +K1
h1→h2

(t))−K0
h1→h2

(t)]

C.2 Firm injections

Similarly as with firm withdrawing strategies we get the following four strategies

• a strategy where we inject from hub h1 and use other edges to maximize the send in from h1

V I
1(t) = Trh1→SF(t)

[
F1(t)(1 +K1

I (t) +K1
h1→SF(t)) +K0

I (t) +K0
h1→SF(t)

]
+ min{Trh2→SF(t), T rh1→h2

(t)}[F1(t)(1 +K1
I (t) +K1

h1→h2
(t) +K1

h2→SF
(t))

+K0
I (t) +K0

h1→h2
(t) +K0

h2→SF(t)]

• the same as the first strategy but where we can buy from h2 and inject into the storage facility

V I
2(t) = Trh1→SF(t)

[
F1(t)(1 +K1

I (t) +K1
h1→SF(t)) +K0

I (t) +K0
h1→SF(t)

]
+ min{Trh2→SF(t), T rh1→h2(t)}[F1(t)(1 +K1

I (t) +K1
h1→h2

(t) +K1
h2→SF

(t))

+K0
I (t) +K0

h1→h2
(t) +K0

h2→SF(t)]

+ (Trh2→SF(t)− Trh1→h2
(t))+[F2(t)(1 +K1

I (t) +K1
h2→SF(t)) +K0

h2→SF(t) +K0
I (t)]

• a strategy where we inject from hub h2 and use other edges to maximize the send in from h2

V I
3(t) = Trh2→SF(t)

[
F2(t)(1 +K1

I (t) +K1
h2→SF(t)) +K0

I (t) +K0
h2→SF(t)

]
+ min{Trh1→SF(t), T rh2→h1

(t)}[F2(t)(1 +K1
I (t) +K1

h2→h1
(t) +K1

h1→SF
(t))

+K0
I (t) +K0

h2→h1
(t) +K0

h1→SF(t)]

• the same as the first strategy but where we can buy from h1 and inject into the storage facility

V I
4(t) = Trh2→SF(t)

[
F2(t)(1 +K1

I (t) +K1
h2→SF(t)) +K0

I (t) +K0
h2→SF(t)

]
+ min{Trh1→SF(t), T rh2→h1

(t)}[F2(t)(1 +K1
I (t) +K1

h2→h1
(t) +K1

h1→SF
(t))

+K0
I (t) +K0

h2→h1
(t) +K0

h1→SF(t)]

+ (Trh1→SF(t)− Trh2→h1
(t))+[F1(t)(1 +K1

I (t) +K1
h1→SF(t)) +K0

h1→SF(t) +K0
I (t)]

Appendix D. Mutually exclusive injections and withdrawals

• Observing that
E
[
X+
]
− E

[
Y +
]
> E [(X − Y )1Y >0]

and denoting
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X =
(∑

k

TrSF→hk
(u)
[
Fk(t, u)

(
1−K1

W(u)
)
−K0

W(u)
]

+
∑
l 6=k

min{TrSF→hl
(u), T rhl→hk

(u)}
[
Fk(t, u)

(
1−K1

W(u)
)
−K0

W(u)
] )

−
(∑

k

Trhk→SF(v1)
[
Fk(t, v1)

(
1 +K1

I (v1)
)

+K0
I (v1)

]
+
∑
l 6=k

min{Trhl→SF(v1), T rhk→hl
(v1)}

[
Fk(t, v1)

(
1 +K1

I (v1)
)

+K0
I (v1)

] )

Y =
(∑

k

Trhk→SF(u)
[
Fk(t, u)

(
1 +K1

I (u)
)

+K0
I (u)

]
+
∑
l 6=k

min{Trhl→SF(u), T rhk→hl
(u)}

[
Fk(t, u)

(
1 +K1

I (u)
)

+K0
I (u)

] )
−
(∑

k

Trhk→SF(v1)
[
Fk(t, v1)

(
1 +K1

I (v1)
)

+K0
I (v1)

]
+
∑
l 6=k

min{Trhl→SF(v1), T rhk→hl
(v1)}

[
Fk(t, v1)

(
1 +K1

I (v1)
)

+K0
I (v1)

] )
We have ∑

k,l

CIW
(
V I
k(v1), V W

l (u)
)
−
∑
k,l

CI
(
V I
k(v1), V I

l (u)
)

= E
[
X+
]
− E

[
Y +
]

> E [(X − Y )1Y >0]

= −E [κ(t, u)1Y >0]

(18)

if options CI
(
V I
k(v1), V I

l (u)
)

meet condition (12) , i.e. if

E [κ(t, u)1Y >0] ≤ 1

2
κ(0, u)

then ∑
k,l

CIW
(
V I
k(v1), V W

l (u)
)
−
∑
k,l

CI
(
V I
k(v1), V I

l (u)
)
≥ −1

2
κ(0, u)

It is similar for options CW
(
V W
k (u), V W

l (v2)
)

meeting condition (13)∑
k,l

CIW
(
V I
k(u), V W

l (v2)
)
−
∑
k,l

CW
(
V W
k (u), V W

l (v2)
)
≥ −1

2
κ(0, u)

where

Y =
(∑

k

TrSF→hk
(v2)

[
Fk(t, v2)

(
1−K1

W(v2)
)
−K0

W(v2)
]

+
∑
l 6=k

min{TrSF→hl
(v2), T rhl→hk

(v2)}

[
Fk(t, v2)

(
1−K1

W(v2)
)
−K0

W(v2)
] )
−
(∑

k

TrSF→hk
(u)
[
Fk(t, u)

(
1−K1

W(u)
)
−K0

W(u)
]

+
∑
l 6=k

min{TrSF→hl
(u), T rhl→hk

(u)}
[
Fk(t, u)

(
1−K1

W(u)
)
−K0

W(u)
] )
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• Considering an optimal portfolio P of present value PV and assuming that
∑

k Ik(u) > 0 and
∑

kWk(u) > 0
we show that constraints (14) and (15) are active. Let P be

P =
{∑

k

Ik(u),
∑
k

Wk(u),
∑
k,l

OIW
(
V I
k(v1), V W

l (v2)
)
,
∑
k,l

OW
(
V I
k(v1), V W

l (v2)big),
∑
k,l

OI
(
V I
k(v1), V W

l (v2)
)}

if neither (14) or (15) are active, let ε > 0, we define a new portfolio P+ with the same positions as P except
the firm positions ∑

k

Ik(u)+ =
∑
k

Ik(u)− ε,
∑
k

Wk(u)+ =
∑
k

Wk(u)− ε

We choose ε small enough so that all model’s constraints are met and we have

PV + − PV = εκ (0, u) > 0

which is inconsistent withP’s optimality. If only (15) is met, there exists v1 such that
∑

k,lOI
(
V I
k(v1), V I

l (u)
)
>

0 and P+ has same positions as P except for positions∑
k

Ik(u)+ =
∑
k

Ik(u)− ε,
∑
k

Wk(u)+ =
∑
k

Wk(u)− ε

∑
k,l

OI
(
V I
k(v1), V W

l (u)
)+

=
∑
k,l

OI
(
V I
k(v1), V W

l (u)
)
−ε,

∑
k,l

OIW
(
V I
k(v1), V W

l (u)
)+

=
∑
k,l

OIW
(
V I
k(v1), V W

l (u)
)
+ε

Combined with (18),

PV + − PV
ε

= κ (0, u) +
∑
k,l

CIW
(
V I
k(v1), V W

l (u)
)
−
∑
k,l

CI
(
V I
k(v1), V I

l (u)
)

> κ (0, u)− E [κ(t, u)1Y >0]

= F (p)
(∑

k

TrSF→hk
(u)K1

W(u) +
∑
k

Trhk→SF(u)K1
I (u) +

∑
l 6=k

min{TrSF→hl
(u), T rhl→hk

(u)}K1
W(u)

+
∑
l 6=k

min{Trhl→SF(u), T rhk→hl
(u)}K1

I (u)
)(

1− E
[
Fk(t, u)

Fk(t)
1Y >0

])
+
(∑

k

TrSF→hk
(u)K0

W(u) +
∑
k

Trhk→SF(u)K0
I (u) +

∑
l 6=k

min{TrSF→hl
(u), T rhl→hk

(u)}K0
W(u)

+
∑
l 6=k

min{Trhl→SF(u), T rhk→hl
(u)}K0

I (u)
)(

1− E [1Y >0]
)

< 1

Then PV + > PV which is inconsistent with P’s optimality.

The argument is similar when only (14) is met.

• Now, assuming (14) and (15) are met and still assuming
∑

k Ik(u) > 0,
∑

kWk(u) > 0, there exists at least
one day v1 such that

∑
k,lOI

(
V I
k(v1), V I

l (u)
)
> 0 and one day v2 such that

∑
k,lOW

(
V W
k (u), V W

l (v2)
)
> 0.

We define P+ as a portfolio whose positions are the same as P except for positions∑
k

Ik(u)+ =
∑
k

Ik(u)− ε,
∑
k

Wk(u)+ =
∑
k

Wk(u)− ε

∑
k,l

OI
(
V I
k(v1), V I

l (u)
)+

=
∑
k,l

OI
(
V I
k(v1), V I

l (u)
)
−ε,

∑
k,l

OIW
(
V I
k(v1), V W

l (u)
)+

=
∑
k,l

OIW
(
V I
k(v1), V W

l (u)
)
+ε
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∑
k,l

OW
(
V W
k (u), V W

l (v2)
)+

=
∑
k,l

OW
(
V W
k (u), V W

l (v2)
)
−ε,

∑
k,l

OIW
(
V I
k(u), V W

l (v2)
)+

=
∑
k,l

OIW
(
V I
k(u), V W

l (v2)
)
+ε

Choosing ε small enough such that all model’s conditions are met, we have, under constraints (14) and (15)

PV + − PV = ε
(
κ (0, uahbn) +

∑
k,l

CIW
(
V I
k(v1), V W

l (u)
)
−
∑
k,l

CI
(
V I
k(v1), V I

l (u)
)

+
∑
k,l

CIW
(
V I
k(u), V W

l (v2)
)
−
∑
k,l

CW
(
V W
k (u), V W

l (v2)
))

> 0

which is inconsistent with P’s optimality.

We conclude that if I and W are optimal we cannot have
∑

k Ik(u) > 0 and
∑

kWk(u) > 0.
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